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SCALING LAW FOR THE IMPACT OF MAGNET FRINGE FIELDS* 

Abstract 
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In an idealized model of a magnet, only one (or in the case 
of combined function magnets, two) of the multipole co- 
efficients will be non-vanishing in the body of the magnet 
(length L,R) and in this region only the 1 = 0 terms in the 
expansions survive. One can make many useful remarks 
about symmetries of the skew and normal multipole coeffi- 
cient in a quite straightforward way through these expres- 
sions. 

A general scaling law can be derived for the relative mo- 
mentum deflection produced on a particle beam by fringe 
fields, to leading order. The formalism is applied to 
two concrete examples, for magnets having dipole and 
quadrupole symmetry. 

1 INTRODUCTION 

During recent years, the impact of magnet fringe fields 
is becoming increasingly important for rings of relatively 
small circumference but large acceptance. A few years 
ago, following some heuristic arguments, a scaling law was 
proposed [I], for the relative deflection of particles pass- 
ing through a magnet fringe-field. In fact, after appropriate 
expansion of the magnetic fields in Cartesian coordinates, 
which generalizes the expansions of Steffen [2], one can 
show that this scaling law is true for any multipole mag- 
net, at leading order in the transverse coefficients [3]. This 
paper intends to provide the scaling law to estimate the im- 
pact of fringe fields in the special cases of magnets with 
dipole and quadrupole symmetry. 

2 GENERAL MULTIPOLE EXPANSION 

The formalism presented here generalizes an approach de- 
scribed by Steffen and reduces to formulas he gives in the 
case of dipoles and quadrupoles [2]. After appropriate ex- 
pansion of the magnetic scalar potential and the use of 
Laplace equation, one can show [3] that the magnetic field 
components can be written in a compact form as 
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3 DIPOLE FRINGE FIELD 

Continuing to ignore bending of the centerline in a dipole 
magnet, the configuration of poles and coils is symmetric 
about the x = 0 and y = 0 planes, and the coils are excited 
with alternating signs and equal strength. Initially, to illus- 
trate the treatment of allowed multipoles, we will permit 
the magnet to be not quite ideal but with coils that respect 
the dipole magnet symmetries. For this to be true, the mag- 
netic field will satisfy the following symmetry conditions: 
B, is odd in 2 and odd in y; B, is even in both x and y; B, 
is even in x and odd in y. Using the general field expansion 
of Eq. (I), we get: 

Taking the field expansion up to leading order, we get: 

B, = bzxy+O(4) 

B, = bo - ;b11y2 + ;bz(l? - y”) + O(4) 

B, = y b,11+O(3) 

(2) 

where b2 represents a sextupole field component allowed 
by the symmetry of the “dipole” magnet (for an ideally de- 
signed magnet b2 = 0) and O(3) and O(4) contain all the 
allowed terms of higher orders. 

For a particle traversing the magnet with a horizontal de- 
viation x and vertical deviation y from the center, the im- 
pulse (i.e. change of transverse momentum) imparted by 
the nominal field gradient is 

Apu = -e 
s 

v,bo(O)dz M -evZbo(0)L (3) 

where L = 1 bodz/bo(O) is the effective length of the mag- 
net, and bo(0) is the dipole coefficient in the body of the 
“dipole” magnet. 
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The impulse due to the fringe field at one end of a mag- 
net is defined in this paper as the effect of field deviation 
from nominal, from well inside (where the nominal mul- 
tipole coefficient is assumed to be independent of z) to 
well outside the magnet (where all field components are 
assumed to vanish.) These will be the limits for subse- 
quent integrals. To obtain explicit formulas the upper limit 
of these integrals will be taken to be infinity. Exploiting 
the assumed constancy of x and y along the orbit, these 
integrals will all be evaluated using integration by parts. 
Suppressing the entire pure dipole contribution, we have 
J-” B(x, Y, z)dz = 0 . For x = y = 0 this is an equal- 
ity by de$nition, and for finite displacements it is approx- 
imately true if (as we are assuming) the transverse parti- 
cle displacements remain approximately constant. At each 
magnet end, the relative change of particle position across 
the fringe region is typically much smaller than the relative 
change of field strength; i.e. Ifl&,//3z,y 1 < 1 bll/bo I. The 
momentum increments of the particle caused by the longi- 
tudinal component of the magnetic field are given by 

Ap,( ll) = e / v,y’B,dz M ev,boyy’ 

Apy(ll) = -e/o,n:‘B,dz M -evzboyx’ . 
(4) 

The momentum increments caused by the transverse com- 
ponent of the fringe fields are 

Ap,(I) = -e [o,B,dz M eu,boyy 
J 

. 
(3 

Apy(I) =e w,B,dz=O 
s 

The total momentum increments due to fringe field are 
therefore 

AP, = 2ew, boyy’ 

A&J M -evzboyx . 
(6) 

The factors xx’, yy’, xy’, and x:‘y can be averaged as fol- 
lows. By the standard “pseudo-harmonic” description of 
betatron motion, letting S,,, = sin$,,y, Cz,y = COS$~,~, 

x=&j?&, x’= 
\i 

$(& - c,+,. (7) 
z 

and the same for y, y’. Using the results (C&,) = (S&,) = 
l/2, (C&,S&,) = l/8, (C&,) = 3/R and (C&,Sz,y) = 
0, and assuming uncorrelated x and y motion, one obtains 

betatron phase. The ratio between the ,momentum incre- 
ment produced by the fringe field to that produced by the 
non-fringe field is approximately 

wp4 M %\lflW 

(IAPOI) 4L . (9) 
(lA~z,l> M J~~w3yfdKJ 

( IAPoI) wm 

For magnets in non-critical locations (which is to say most 
magnets) the values of fl and fs are in the range from 1 
to 2, so a “back of the envelope” estimate of the impulse is 
given by 

(10) 

where EL is the rms beam transverse emittance. Often this 
ratio is so small as to make neglect of the fringe field de- 
flections entirely persuasive. The simplicity of the formula 
is due to the fact that the fringe contribution is expressed 
as a fraction%f the dominant contribution. Note that, as 
stated before, this formula applies to each end separately, 
and does not depend on any cancelation of the contribution 
from two ends. The case in which fringe deflections are 
likely to be most important is when PI or @b is anomalously 
large, for example in the vicinity of beam waists such as 
at the location of intersection points in colliding beam lat- 
tices. In this case, and by just keeping the dominant term 
of (9) the deflections can be approximated by 

where ,0&, stands either for /3: or ph. 

4 QUADRUPOLE FRINGE FIELD 

The configuration of poles and coils in a quadrupole mag- 
net is symmetric about the four planes x = 0; y = 0; x = 
y; x = -y and if the coils are excited with alternating 
signs and equal strength, the magnetic field will satisfy the 
following symmetry conditions: B, is even in x and odd in 
y; B, is odd in x and even in y; B, is odd in both x and y; 
and BZ(x, y, 2) = B,(y, x, z). As before, we may express 
the field components as: 

(x2x/2) = alp) 

(y2x/2j = G&/f203~)4/) 

4Pz . 

(8) 

where f~(p’) = 1 + 3,H2/4, &(/3’) = 1 + /3”/4, and 
p’ = dp/dz and the symbol ( ) denotes the average over 

Bz =m$og ;;;$2;;1y:“:;l (342$m+1-2~ .m . 
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The field expansion can be written as 

B, = y bl - $(3X” +;Y”)$] 1 + O(5) 

By = x 
I 
bl - &(3y” + 2)bp 1 + O(5) 

(12) 

BZ = xyb!] + O(4) 

where bl (z) = % II=Y=c = sIz=Y=a is the transverse 
field gradient at the quadrupole axis, and O(4), O(5) con- 
tain all the higher order terms. Note also that b3 = -br1/2, 
due to the field symmetry. For quadrupoles, common no- 
tations are g(z) = bl(z) and go = g(0) = bl(0). For a 
particle traversing the magnet .with a horizontal deviation 
z and vertical deviation y from the center, the momentum 
increments produced by the nominal field gradient are 

AP~O = -ewoxL, AP~O = ev,awL (13) 

whereL = J g(z)dz/g 0 is the effective length of the mag- 
net, and go is the gradient in the body of the quadrupole 
magnet. Similar to the case of dipole magnet, sup- 
pressing the quadrupole contribution from B, one obtains 
./-“, B(x, Y, z)dz = 0 i.e. the integrated effect of the 
longitudinal component of the fringe field across the en- 
tire quadrupole magnet is small if (as assumed throughout) 
the particle transverse displacements remain approximately 
constant. At each magnet end across the fringe field re- 
gion, the relative change of particle position is typically 
much smaller than the relative change of field strength, i.e. 
[/3j. ,//3z,,I < lgh/gcl . The momentum increments of the 
particle contributed from the longitudinal component of the 
magnetic field are 

Apz(II) = e / v,y’B,dz = ev=xyg’go 

APY(ll) = -l/ 

. (141 
v,x’B,dz M -ev,xyx’go 

The momentum increment produced by the transverse 
component of the fringe fields are 

1 
Ap,(I) = -ev,-zyy’gc - ev, 

2 
$(x2 + y2)x’go 

Ap,(I) = ev,$z&ga + e~~~(a~~ + y2)y’ga 
. (15) 

Combining the contributions, the total momentum incre- 
ments due to fringe field are 

Apz =ev, ix y y’go - ev, a (x2 + y2),x’go 
. (16) 

APY 25 - ev,~xya’go + evz t(x2 + y2)y’go 

Again, by using the standard “pseudo-harmonic” de- 
scription of betatron motion and assuming uncorrelated 2 
and y motion, one obtains the ratio between the momentum 

increment produced by the fringe field to that produced by 
the non-fringe field as 

where fs (,B’) = 1-t 5pt2 /4 and the bar over the ,B functions 
denotes their average on the body of the magnet. 

For quadrupoles in non-critical locations, the same as- 
sumptions as were made for dipoles yields “back of the 
envelope” estimate 

(18) 

The same estimate is therefore applicable to both erect 
dipole and erect quadrupole deflections. As was true for 
dipoles, the fringe fields of quadrupoles become most im- 
portant near beam waists where the p’s are large. In that 
case, the fractional deflections become, as before, 

(19) 

where Ph,,, stands either for ,0; or ,f?L. Remarkably, it can 
be shown that this estimate is true for every multipole mag- 
net [3]. 

5 CONCLUSION 

We have shown in two concrete examples that the relative 
momentum deflection due to magnet fringe-fields, to lead- 
ing order, is proportional to the transverse emittance and 
inversely proportional to the effective length of the mag- 
net, in cases where the magnet is not in a critical location, 
i.e there is no violent variation of ‘the optical functions. If 
the above is not true, the scaling is modified by just a factor 
of the maximum ,f3’. These scaling laws are in agreement 
with previous estimations [I] and can be proved for any 
multipole magnet [3]. 
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